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Density-matrix renormalization-group simulation of the SU(3) antiferromagnetic
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We analyze the antiferromagnetic SU(3) Heisenberg chain by means of the density-matrix renormalization

group. The results confirm that the model is critical and the computation of its central charge and the scaling
dimensions of the first-excited states show that the underlying low-energy conformal field theory is the SU(3),

Wess-Zumino-Novikov-Witten model.
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I. INTRODUCTION

In recent years, a renewed interest in models of condensed
matter with a symmetry larger than SU(2) has arisen. This is
because these models represent not only challenging theoret-
ical problems but also can be effectively experimentally
implemented. In particular SU(4) systems can be realized in
laboratories in transition-metal oxides' where the electron
spin is coupled to the orbital degrees of freedom. A possible
realization of SU(3) antiferromagnetic (AFM) spin chains in
systems of ultracold atoms in optical lattices has been re-
cently proposed.” In this case the spin would be related to the
SU(3) rotation in an internal space spanned by the three
available atomic states [colors, in the SU(3) language], with
the condition that the number of particles of each color is
conserved. Other examples involve the SU(3) trimer state in
a spin tetrahedron chain®* or the spin tube models in a mag-
netic field,”> where the low-energy effective Hamiltonian can
be identified with a particular anisotropic SU(3) spin chain.

From a theoretical point of view, the SU(3) spin model
has also been studied from different viewpoints. In recent
years the interest on ferromagnetic SU(N) spin chains has
been boosted by their implication in the anti—de Sitter/
conformal field theory (AdS/CFT) correspondence.®’ On the
other side the family of integrable spin chains include some
models with SU(3) symmetry, as first shown by Sutherland,®
who generalized the Bethe ansatz to multiple component sys-
tems which include the SU(3) spin chain, showing that it is
gapless. Also the SU(3) Heisenberg model can be directly
related to a particular SU(3)-symmetric bilinear biquadratic
spin-1 chain, the Lai-Sutherland (LS) model, which is also
known to be critical.®!” In terms of CFT the LS model and
the SU(3) spin chain should belong to the same universality
class, that of the SU(3); Wess-Zumino-Novikov-Witten
(WZNW) model.!!-12

In this paper we present a numerical analysis of the SU(3)
spin chain by means of the density-matrix renormalization
group (DMRG). After a short description of the model and
its mathematical framework (Sec. II), we present our new
results (Sec. IIT) which confirm the criticality of the model as
well as its correspondence to the Lai-Sutherland model. In
particular, due to the ability of our program to provide the
quantum numbers for each state, we can show that the ex-
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cited states of the spin chain have the same quantum num-
bers as the irreducible representations (IR) of SU(3). We
compute the scaling dimensions of the first excitations,
which turn out to agree with those of the SU(3); WZNW
model, which corresponds to the low-energy effective-field
theory descriptions of our spin chain. The results are further
confirmed by the computation of the central charge by means
of the vacuum entanglement entropy.

II. SU(3) MODEL

We consider the following Heisenberg model

L

H=sti'si+1’ (1)

i=1

where the spin variables are expressed in terms of the gen-
erators of SU(3) in the fundamental representation: S?:%)\?,
with a=1,...,8 and A, being the eight Gell-Mann matrices.
The sign of J selects an antiferromagnetic spin chain (J
>0) or a ferromagnetic (FM) one (J<0). In the following
we shall concentrate only on the AFM case, which has been
partially considered also in Refs. 13 and 14.

In terms of the following ladder operators, T7-=\!+i\?,
VE=A*= i\, and U =\°+i\7, Hamiltonian (1) becomes

L
J 1
=13 {Z(TTTT+1+V7W+1+ ULz, +He)
i=1

1 1
+ Exfxﬁﬂ + 5x§x§+l}. (2)
This makes easier to identify two operators, S, and Q_, given
by the sums of the two diagonal Gell-Mann matrices
—
1 /3
S.=2 5?\?, 0.=2 7)\§ 3)

that commute with the Hamiltonian and correspond to con-
served quantities (isospin and hypercharge). The correspond-
ing quantum numbers label the different eigenstates of
Eq. (1).

The Lai-Sutherland model is defined as the bilinear biqua-
dratic spin-1 chain
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L
H=J'E [§z : §i+1 + (§i : §i+1)2] “4)

i=1

and characterized by an SU(3) symmetry. Model (4) and the
SU(3) spin chain can be mapped one onto the other by means
of the following identity'>

8

- ~~ 1 1

SSii + (Sisi+1)2 - 1= g + EE )‘?)‘?H' (5)
a=1

We have already mentioned in Sec. I that the LS model is
known to be gapless and to belong to the same universality
class of the SU(3) level-1 Wess-Zumino-Novikov-Witten
model with central charge ¢=2. Due to the correspondence
between the two models, the SU(3); WZNW model has to be
the low-energy effective critical-field theory also for the
SU(3) spin chain. We shall numerically show that the SU(3)
Heisenberg chain is critical, and from the energy state ob-
tained from the DMRG, we shall compute the central charge
and the scaling dimensions of Eq. (1) and compare them to
the values predicted for the SU(3); WZNW model.

The states of the spin chain can be organized according to
the irreducible representations of the affine (Kac-Moody) Lie
algebra associated to SU(3). Let us recall'® that a useful way
of representing the IR’s of the Lie algebra su(3) is through
the Young Tableau (YT), which can be labeled by two posi-
tive integer numbers (p,q). Once p and g are known, one can
easily compute the dimension d of the representation and the
quantum numbers associated to the isospin S, and the hyper-

charge Q. according to!”16
1
d=Zp+Dlg+1Dp+q+2) (6)
and
3
Sc==L-I+1.d=11 Q.=3Y. 7)

where I=%(r+s) and Y=(r—s)—§(p—q), with 0=r=p,0
=s=gq. In particular, the cases (1,0) and (0,1) give, respec-
tively, the fundamental (3) and the antifundamental (3) IR,
while the singlet representation (1) corresponds to (0,0).

It has been proved'® that, in analogy with the SU(2) case,
the ground state (GS) of the AFM SU(3) Hamiltonian is a
singlet, and since it is made of particles u, d, and s in equal
number, it can be obtained in finite chains having only a
number of sites which is a multiple of three, L=3M. As for
the excited states, we expect them to be in correspondence
with the tower of conformal states of the corresponding
SU(3) WZNW model. The primary states of this theory are a
finite number and are given'® by fields ®, 5, whose holomor-
phic (antiholomorphic) part transforms according to a repre-
sentation N=(p,q) [A=(p',q’)] with the values of p,g (and
similarly of p',q') satisfying the condition: p+¢g =k, where
k is the level. The conformal dimension of the primary field
is then x y=x(, o)+ X(p’ 41) With
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TABLE I. Quantum numbers and scaling dimensions for some
of the primary fields @, 5 of the SU(3); WZNW model.

A A (Sza Qz) X)\,):

(1) (1) (0,0) 0
(=1/2,1/2)

3) (1) 1/3

(07_ 1)
{(t 112, 1/2)

3) 1) 0.1) 13
(£1/2, +3/2)
3) 3) (0.0)(3 times) 23
(=1,0)
1
(P’ +q*+pg+3p+3q), (8)

D= 3k 4 3)

and a similar expression for X(pr 4)- FoOr future reference, the
values of x, y for some primary fields in the case of k=1 are
reported in Table I.

To end up this section, we notice that in a finite chain of
length L not all quantum numbers, i.e., states, may be real-
ized. For example, working with periodic boundary condi-
tions and with an even number of sites, the singlet
(1) X (1) (ground) state, with x=0, appears only for chains
with L=6M (with M a positive and integer number), while
the (3)X (1) [or the (1)X(3)] states are present only if
L=6M+4 (or L=6M+2), both with x=1/3.

III. NUMERICAL ANALYSIS

The SU(3) version of the DMRG we have used imple-
ments the following Hamiltonian:

L
J 1
= 52 |:Z(kOTiFTi_+1 +k Vi Vi + kU Uy, + Hel)
i=1

1
ettt ©

where k; and z; are input parameters. Model (9) reproduces
the AFM (FM) case when all the k;’s and the z;’s are equal to
1 (-1). By tuning the input parameters k; and z;, we can
study all the possible anisotropic version of the SU(3)
Heisenberg model. A very important feature of this DMRG is
that it implements both the quantum numbers S, and Q,
given in Eq. (3). This implementation considerably reduces
the computation time and, on the other hand, once S, and Q,
are fixed from input, each run of the DMRG yields exclu-
sively the energies of the states within those quantum-
number sectors. This is very useful when one needs to clas-
sify the excitations according to the values of the isospin and
of the hypercharge. By setting k;=k,=z,=0, we restrict to
the SU(2) sector of SU(3). This has been used as a check to
the program; the DMRG in this case reproduces perfectly all
the energy states of the SU(2) Heisenberg model.

We study now the isotropic AFM chain with periodic
boundary conditions by means of an infinite-size DMRG
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FIG. 1. (Color online) Plot of the ground state Ey, and first-
excited states for chains of different lengths (from L=12 up to
L=52). The solid lines correspond to scaling dimensions % and %
and have been drawn as a guide for the eye. For sake of clarity, not

all the degeneracies have been reported.

with up to m=2200 states in order to reduce the uncertainty
on the energies to the order of magnitude of the truncation
error. The data for the ground state and the first-excited states
are plotted in Fig. 1.

Let us first concentrate on the ground state, which, in
agreement with theoretical predictions, it is found only when
L=6M. The plot of Ey as a function of 1/L* shows a good
linear behavior; this justifies the fitting of our data by the
CFT equations for the GS'%20

Ey mCU
=0 _ .

3 T (10)

where e, and the product cv are kept as fitting parameters.
We obtain e,,=—0.518 288 and cv=2.044 19. In order to de-
rive the value of v we need an independent derivation of c.
The central charge for a SU(N) level-k WZNW model is
given by!®

. k(N*-1)

k+N (1)

If the effective-field theory describing our spin chain is the
conformal SU(3); WZNW model, the central charge must be
c=2.

However, it is possible to have a direct numerical deriva-
tion of ¢ from the asymptotic behavior of the von Neumann
entropy S,=-Tr,(p, log, p,) of the reduced density matrix
p,=Tr;~, p of a subchain with n spins of a critical system of
length L, as a function of n and L, where p is the density
matrix associated to the ground state of the chain. Indeed,
one has?!??

s, =<1 5'(2) +A (12)
n=3log,| —sin| 7n )

As usual ¢ is the central charge while A is a nonuniversal
constant. The DMRG computes the density matrix for a
block of length n in a chain of length L so that S, becomes
quite simple to calculate. Figure 2 shows the behavior of the
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FIG. 2. (Color online) Analysis of the von Neumann entropy
using 2000 DMRG states. The figure on the left (a) shows S, as a
function of the block length n for different sizes L of the chain; the
figure on the right (b) is the plot of the same data fitted in a loga-
rithmic scale. The linear fit of these data provides the value for the
central charge ¢=1.995=*0.001.

von Neumann entropy by using 2000 DMRG states, as a
function of the normalized block length n/L in Fig. 2(a) and
as a function of y:log2[§sin(fn)]/3 in Fig. 2(b). As
expected,?®?* the data collapse on the same curve in plot (a)
while they confirm the behavior of Eq. (12) in plot (b). In
this figure one can observe that in the range for
L €[18,48], and values of the block length n ranging from 8
to L-8, the data lie perfectly on a straight line. In
these ranges of n and L, the linear regression on all data
S,=cy+A yields the values A=(1.774%+0.002) and
¢=(1.995+0.001) for the constant and the central charge,
respectively. Thus, the theoretical prediction of Eq. (11) is
confirmed with very high accuracy. An analogous calculation
with only 1000 states in the DMRG run shows qualitatively
the same behavior but with evident deviations from a straight
line in a plot like Fig. 2(b) for higher values of y. This is the
reason why we have performed all calculations keeping 2000
states. Finally, the value of ¢ can be substituted into the
product cv derived from the GS to recover the velocity of the
excited modes v=(1,0247 +0.0005), which is close to the
expected value® /3.

Before proceeding with the analysis of the excited states,
let us check the asymptotic value of the energy density e...
The theoretical prediction for the ground state of the S=1
bilinear biquadratic Heisenberg Hamiltonian (see Ref. 25) is

Egs=—In3——— 41 (13)
=—In3-—=+1,
GS 3\’/5

which already takes into account the factor —1 of the left-
hand side (Lh.s.) of Eq. (5). Starting from the correspon-
dence between our SU(3) chain and the biquadratic one [Eq.
(5)], we can compare the value of e, we obtained with the
one predicted by Eq. (13): Egg=—0.703212. The match is
exact to the third decimal (-0.703 243) if one also recalls
that the Hamiltonian has a factor 1/4 [due to the definition of
the spin variables in terms of the SU(3) generators] so that e,
needs to be multiplied by a factor two, and summed to the
factor 1/3 of Eq. (5). This is a further numerical proof of the
equivalence between the Lai-Sutherland and the SU(3) spin
model.
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TABLE II. Scaling dimensions of the first (x;) and the second
(x,) excited states for each L obtained from the DMRG analysis.
The mean value (A) between L=6M+2 and L=6M +4 for x; and x,
is also provided (see also Fig. 1). For L=6M only the first excita-
tion above the ground state has been considered.

L X X2

6M+2 0.3414 =0.0001 0.6291 = 0.0003
6M+4 0.3406 = 0.0002 0.6238 = 0.0003
(A) 0.3410 %= 0.0002 0.6265 = 0.0003
oM 0.6503 =0.0003

Let us study now the excited states. With the DMRG code
it is possible to fix the quantum numbers S, and Q, at every
step of the calculation and look for the first low-energy states
with given quantum numbers. For every size L of the chain
we selected 9 lowest energy states with different values of S,
and Q,, according to Table I. In this way we can partially
verify the degeneracy and the precision of the excited states.
In Fig. 1 we have plotted only a subset of the energies for
every L since the other values are effectively not distinguish-
able from the plotted ones (for example, this is the case for
the exited states with §,=0 and Q,=0, and S,=1/2 and Q,
=3/2, shown in the figure). One immediately sees that the
slope of excited states depends on the size L(mod. 6) of the
chain. In particular, for L=6M the first excitation scales with
a slope which is unmistakably different from the slope of the
L=6M+2 or L=6M +4 data. For small values of L the data
corresponding to the same S, but with opposite Q. are split
by a finite-size correction, while for increasing values of L
they tend to overlap and scale to the same asymptotic value.
For the excited states CFT predicts that

27v
Ej—EOO=ij, (14)
where x; is the scaling dimension of the jth excitation for a
given size L of the chain. We have performed a linear fit on
the data of Fig. 1 for L e[20,52] in order to extract the
scaling dimensions. For all values of L, Eq. (10) can be in-
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serted into Eq. (14) with the values of e, and ¢ and v ob-
tained before. The numerical coefficients for the scaling di-
mensions that one can obtain from the DMRG data for the
afore mentioned excited states of Fig. 1 are listed in Table II.

As expected,'*?%?7 the values of the allowed conformal
dimensions are very close to the values of 1/3 and 2/3 pre-
dicted by a SU(3); WZNW model.

IV. CONCLUSIONS

We have provided strong numerical evidence of the criti-
cality of the AFM SU(3) spin chain. Also, we have con-
firmed that the conformal field theory describing the chain is
effectively the SU(3); WZNW model by computing the cen-
tral charge and scaling dimensions of the lowest excited
states of the model, which turn out to be organized according
to the IR of SU(3); Kac-Moody algebra.

There are many interesting generalizations of the above
models which deserve further study. In particular, a similar
ferromagnetic spin chain is connected with the nonlinear
CP? sigma mode at =1 and might be useful to clarify some
controversial problems of the model. Another interesting
problem is to consider larger SU(N) symmetry groups. In
two-dimensional chains, the vacuum state is of Néel type for
N=4 and of Spin-Peierls type for N=5.28 The analysis by
means of DMRG technique might shed some light on the
transition mechanism.
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